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Abstract—Many vulnerabilities in today’s software products 
are rehashes of past vulnerabilities. Such rehashes could be a 
result of software complexity that masks inadvertent loopholes in 
design and implementation, developer ignorance/disregard for 
security issues, or use of software in contexts not anticipated for 
the original specification. While weaknesses and exposures in 
code are vendor, language, or environment specific, to 
understand them we need better descriptions that identify their 
precise characteristics in an unambiguous representation. In this 
paper, we present a methodology to develop precise and accurate 
descriptions of common software weaknesses through lightweight 
formal modeling using Alloy. Natural language descriptions of 
software weaknesses used for formalization are based on the 
community developed Common Weakness Enumerations (CWE).  

Index Terms—Software weakness, Alloy modeling, CWE.  

I. INTRODUCTION 
Precise and accurate weakness descriptions are needed as one 
element to speed the work of detecting and preventing those 
weaknesses in software. While precision, accuracy and 
automation may be achieved by formal representations, such 
formality must be balanced with accessibility for review by 
software developers that engage in a software implementation 
effort, which is still for the most part a manual activity. Thus, 
an important prelude to preventing, mitigating, or detecting 
weaknesses in software and systems is to have clear, 
unambiguous, widely accepted definitions of such weaknesses.   

The Common Weakness Enumeration (CWE) provides a 
unified and measureable set of software weaknesses for use in 
software assurance activities [6]. CWE is a community driven 
and continuously evolving taxonomy of software weaknesses. 
The CWE vision is to enable a more effective discussion, 
description, selection, and use of software security tools and 
services that can find weaknesses in source code and 
operational systems as well as better understanding and 
management of software weaknesses related to architecture and 
design. The CWE is often compared to a “Kitchen Sink”, 
although in a good way, as it aggregates weakness categories 
from many different vulnerability taxonomies, software 
technologies and products, and categorization perspectives. 
While the CWE is comprehensive, using its highly tangled web 
of weakness categories to study vulnerabilities for a particular 
software project is a daunting task for stakeholders in the 
software development lifecycle.  

Much work has been done on the CWE but there are still 
ambiguities, and perhaps errors, in its various weakness 

definitions. Consider the following questions that might occur 
to someone learning about software weaknesses.   
• Is a buffer overflow (CWE-119) the same as a stack 

overflow (CWE-121) or an unbounded transfer (CWE-
120) or is one just a refinement of another?   

• If an integer overflow (CWE-190) leads to memory 
bounds violation (CWE-119), which weakness is it?  Is it 
both or is there some other relation between them?   

A quest to develop precise definitions of weakness could 
systematically raise these questions about ambiguity, lead to 
consolidation or differentiation among CWEs, all while 
providing uniformity in their interpretations. Several 
approaches exist to formally specify software engineering 
artifacts (e.g. requirements, designs, programs, etc.). However, 
software weaknesses are rarely modeled formally due to their 
abstract descriptions. We envision that a formally specified 
collection of weaknesses would suggest properties that should 
not be exhibited in a software specification as well as a tightly 
constrained set of permitted behaviors.  

II. WHY LIGHTWEIGHT FORMAL MODELING USING ALLOY? 
Given the declarative and abstract nature of security 

weaknesses; it is highly desirable to understand the concrete 
circumstances under which a design permits them. Therefore, 
in our approach we codify community based weakness 
definitions as unambiguous, readable and reusable declarative 
specifications that are fully executable in a bounded scope. We 
parameterize the natural language expression of weakness 
definitions into security relevant concepts and express the 
necessary and sufficient conditions in a lightweight formal 
modeling language. A formal specification is highly desirable 
as it enables a fully or semi-automated analysis of system 
behavior. Particularly for analysis of security weaknesses, in 
contrast to model checking, we find that a model finding 
problem [5] is a more appropriate approach that addresses these 
interesting set of questions:  
Counterexample model finding: With a certain weakness what 
unwanted behaviors can the software exhibit? In other words, 
what unwanted system models exist that exemplify the 
specified security weakness? How does an under-constrained 
software violate security expectation? 
Valid model finding: Can a valid instance of software behavior 
exist if the software weakness is designed out? In other words, 
does the system permit acceptable functional behavior with the 
security weakness accounted for?  
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To support these model-finding activities we have chosen 
Alloy [5]. Alloy is a lightweight model finder with a fully 
automatic analysis that provides immediate feedback. It is 
based on relational logic that combines first order logic with 
the operators of relational calculus. All structures in this logic 
are built from immutable and un-interpreted atoms, and their 
relationships. The Alloy language is declarative with the 
following key elements:  
1. Signature declarations: (keyword sig) that declare a set of 

atoms and a set of fields that represent relations. Signature 
declarations define the static structure of a model. 

2. Constraints:  (keywords fact, pred, fun, assert) “Facts” 
represent constraints that are always true. “Predicates” 
represent a constraint that can be reused in facts, other 
predicates or used to simulate model instances that 
preserve the constraint. “Functions” are also reusable 
constraints like predicates but have a return type other than 
Boolean. “Assertions” record constraints that are expected 
to hold, but interact with the model only when required (in 
contrast to facts that are “always on”). 

3. Commands: (keywords run, check) are instructions to the 
analyzer to perform particular analyses. “Run” simulates 
the model with respect to predicates or functions, where as 
“Check” explores counterexamples for assertions. 

Alloy analysis is done via a satisfiability solver; given 
constraints on variables, it finds a set of instances to the 
variables that satisfies the constraints. Satisfiability solvers are 
generally undecidable, but Alloy will exhaustively search for a 
satisfying model instance within a bounded scope. Because of a 
bounded scope if no model instance is found, there is a 
possibility that it may exist in a larger scope.  

Alloy’s model finding exercise of looking for refutations of 
an assertion closely mimics the activity of a malicious and 
dedicated adversary that seeks to undermine the security of a 
design by exploiting weakness (under-constrained behavior). 
Just as refutation-based analysis requires discovering only one 
counterexample to invalidate an assertion, an attacker only 
needs to discover one possible instance of unexpected, but 
allowed, software behavior to undermine or bypass defenses.  

III. METHODOLOGY 
We propose the following modeling approach to develop 

lightweight formalization of CWE definitions: 

STEP 1: Preparing CWEs 
An initial activity is to study the textual definitions of the 
weakness and identify the central concepts involved. In 
particular, we focus on the answers to the following questions 
in a CWE definition: 
1. WEAKNESS: What are the discernable conditions necessary 
to establish the existence of the weakness? (They explain 
“What” conditions signify a weakness.) 
2. FAULT: What are the software faults that can precede the 
weakness conditions? (Software faults, in the form of allowed 
behaviors, are precursors that bring about the weakness 
conditions. They explain “How” weakness conditions occur.) 

3. RESOURCE/LOCATION: What are the resources and/or 
locations where the weakness conditions commonly occur? 
4. CONSEQUENCE: What are the consequences i.e. what are 
the failure conditions that the weakness conditions can lead to? 

These four questions have also led to the development of 
semantic templates to assist programmers in the study of 
software vulnerabilities. The development of such semantic 
templates and related experiments are described elsewhere 
[4][7]. Here we focus on the lightweight formal description of 
these concepts identified from CWE textual definitions.  

The CWE is a collection of interrelated weakness 
definitions. Therefore, for a CWE that is the target of the 
formalization activities, we navigate to its parent CWEs and 
repeat this step for their definitions. This activity ensures that 
all domain concepts and related constraints implicitly inherited 
from parent CWEs are considered during the formalization. 

STEP 2: Identification of Domain Concepts and Relationships 
The next step is to study the textual descriptions of the 

software fault, weakness, location/resource and consequences 
to identify the domain concepts involved, much like object 
identification in object-oriented analysis [2]. In the process, the 
scope of the formal model is defined. The identified concepts 
form the basis for authoring Alloy signatures.  

Next, we identify which concepts are related and describe 
their relationships, using object modeling techniques. 
Relationships are named and properties of those relationships 
(e.g., cardinality, etc.) are determined. These relationships 
become fields within their respective Alloy signatures. In this 
step, it also becomes necessary to identify domain constraints 
as certain facts about the concepts or their relationships (e.g. 
multiplicities, functional, inverse, etc.). 

STEP 3: Modeling Software Operational Behavior  
This step defines Alloy predicates that models the aspect of 

software operational behavior upon which the weakness can 
arise. A key challenge is determining the appropriate level of 
abstraction to use in defining the behavior. The specification 
should not be too high level that it no longer enables 
meaningful analysis. It should also not be too low-level as this 
would be better served by code examples.  

In case studies presented later in the paper, we strive for the 
level of abstraction to match as closely to the CWE textual 
definition. CWE annotation of a weakness as class (abstract), 
base (has details about detection and/or prevention) or variant 
(limited to a specific language or technology) further helps the 
effort. Most base weaknesses tend to be abstract, so operations 
are defined on software elements that are largely left 
unspecified. On the other hand, weakness variants are more 
low level, in which case, operations more closely emulate the 
data structures. Depending on the weakness being modeled, the 
behavior can also be modeled as static (stateless) or dynamic 
(stateful). Stateless operations treat each instance of the 
operation as independent of prior operations while stateful 
operations depend on certain prior operations involving the 
same signatures. While Alloy does not have built-in support for 
time or mutable state, these are explicitly included in a model. 
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Upon modeling the predicates, simulate them by running 
them using Alloy Analyzer. The discovered model instance 
may or may not exhibit the weakness condition.  

STEP 4: Checking for Violations of the Desired Behavior 
Once the operational behavior has been modeled, the 

desired behavior is declaratively specified in terms of the 
desired post-condition resulting from executing the operation 
specified using Alloy predicates. Note that predicates are 
“reusable constraints” in the sense that they are only invoked 
upon request. In this step, the predicates are invoked using 
Alloy assertions that declaratively specify the desired post-
conditions. The assertions can then be checked automatically 
within a bounded scope, using the Alloy Analyzer. If found a 
model instance is discovered it acts as a counter-example for 
the stated assertion. Violations of the assertions can be 
considered as manifestations of the weakness and represent 
software behavior that can lead to exploits. 

STEP 5: Enforcing the Desired Behavior 
In this step, the goal is to define invariant properties on the 

operation that prevent the weakness from occurring. This 
provides a validation step for the modeling process. The 
invariant is expressed as an Alloy fact. By running the Alloy 
Analyzer with these invariants, it is expected that no assertion 
violations should occur (i.e. no counterexamples discovered in 
the given search scope upon checking the assertion in Alloy 
Analyzer), while simulating the predicates (i.e. running the 
predicate in Alloy Analyzer) still produces valid and expected 
system model instances. Note that only the explicitly expressed 
assertions and predicates are analyzed for consistency. 

IV. CASE STUDY 
We illustrate our modeling approach on CWE-119: 

Improper Restriction of Operations within the Bounds of a 
Memory Buffer, which is described as follows: 
Description Summary: The software performs operations on a 
memory buffer, but it can read from or write to a memory 
location that is outside of the intended boundary of the buffer. 

STEP 1: Prepare CWEs 
CWE-119 is the most abstract description of a buffer 

overflow weakness. It is also a class weakness (abstract).  
Using the four questions in this step the following aspects are 
identified from the CWE textual description. 
• WEAKNESS-0: Improper restriction of operations within the 

bounds of a memory buffer 
• WEAKNESS-1: Software can read from a memory location 

that is outside of the intended boundary of the buffer 
• WEAKNESS-2: Software can write to a memory location 

that is outside of the intended boundary of the buffer 
• RESOURCE-1: Memory Buffer 

Note that not all four aspects are identified in most CWE 
descriptions. Some CWEs descriptions are resource focused, 
where as others are fault and weakness focused.  

STEP 2: Identification of Domain Concepts and Relationships 
The following domain concepts are extracted:  

• Software, Operations (e.g. read and write), Memory Buffer, 
and Memory Locations  

Furthermore, these concepts are related as follows:  
• Buffers consists of memory locations  
• Locations are either part of a buffer or not  
• Software performs operations on a buffer at certain memory 

locations  
With this information, here is an initial Alloy specification: 
// Signature: Buffer with a relation contains 
// that identifies the set of locations that 
// are contained in the buffer 
sig Buffer { 
 contains: set Location 
} 
// Signature: A Location is part of zero or 
// more Buffers. (When no multiplicity is  
// specified for a field the default is one.) 
sig Location{ 
 partof: set Buffer 
} 
// partof relation is the inverse of contains 
fact { 
   partof = ~contains 
} 
// Signature: Software with a relation. 
// performsOperation relation is a three way  
// mapping associating Software, Buffer, and 
// Location. It contains the tuple s->b->l 
// when Software s performs an operation on 
// Buffer b at location l. The multiplicities 
// indicate that many-to-many relationship  
// can exist between members of Buffer and 
// Location for a member of Software.  
sig Software{ 
   performsOperation:  
      Buffer set -> set Location 
} 

Alloy visualizes the metamodel as shown in Figure 1. 
 

 
Figure 1. CWE-119 - Alloy metamodel. 

STEP 3: Modeling Software Operational Behavior 
Next, predicates are added. To formally specify the 

description of CWE-119, we first simulate a software operation 
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on a buffer in an Alloy specification. The predicate “operate” 
models the execution of a buffer read or write as a simple 
stateless operation that is performed on buffer named b at a 
location l.  
// Predicate: Operate that captures a software 
// operation on a buffer at a location 
// Running this predicate helps confirm  
// that the model produces valid instances 
//  In Alloy, "in" can be read as "subset of". 
pred operate  
[s: Software, b: Buffer, l: Location] { 
   b->l in s.performsOperation 
} 
// Run predicate in the specified scope 
run operate for  
1 Buffer, 3 Location, 1 Software 

The execution (“Run”) of the predicate instantiates the 
signatures involved in the predicate that satisfies the structures 
formed by the defined relationships. Note that the operation is 
bound for using one member of buffer, three members of 
locations and one member of software. We wanted to study the 
effect on a particular buffer, hence bounding the operation to 
one buffer. Similarly for software bounding it here means we 
are only looking at the effect of executing one process or 
thread. The bound of 3 locations enables the analyzer to 
examine various instances with 3 locations, some associated 
with buffer and others which are not. The “small scope 
hypothesis” of Alloy states that if an assertion is invalid then it 
probably has a small counterexample. So it recommended to 
start with a small scope and gradually expand it if a 
countermeasure is suspected to exist in a larger scope. Figure 2 
below shows a model instance that results upon execution of 
the operate predicate. The simulation highlights Software 
operations performed on Locations in the context of a single 
Buffer. While operation on Location0 is expected, the operation 
on Location1 is outside the bounds of the intended Buffer. 
Several other instances can be found by browsing the generated 
instances of the operate predicate. 

 
Figure 2. Simulation of the Operate Predicate. 

STEP 4: Specifying the Desired Behavior 
Instead of manually combing through all instances resulting 
from the operate predicate, we use the analyzer to identify all 
such violations by providing an assertion to check against. 

// Assertion: All software operations on a  
// Buffer are restricted within the bounds  
// of the buffer. 
assert noBufferOverflow{ 
   all s: Software, b:Buffer, l:Location|  
 operate[s,b,l] implies l in b.contains 
} 
// Check assertion in the specified scope 
check noBufferOverflow for  
1 Buffer, 3 Location, 1 Software 

By checking the assertion (“Check”) Alloy returns the 
model instances that are counter-examples, in this case, all 
instances where there is a buffer overflow violation. Figure 3 
shows one such violation as reported by the assertion check.  

 

 
Figure 3. Buffer Access Violation as Counter-Example of Assertion 

STEP 5: Enforcing Desired Behavior 
To avoid the undesired behavior of writing outside the 

buffer, we can further constrain the model. This constraint is 
introduced as an invariant. 
// Fact: Software operations on a Buffer are  
// restricted to the locations in the bounds 
// of that Buffer 
fact limitBufferOverflow { 
  all s: Software, b:Buffer|  
         s.performsOperation[b] in b.contains 
} 

After introducing this fact, the simulation only produces 
model instances where CWE-119 weakness does not occur. 
Since the model is appropriately constrained, no 
counterexamples result on re-checking the “noBufferOverflow” 
assertion (Figure 4). With this fact introduced, the “operate” 
predicate still produces valid model instances.  

 

 
Figure 4. Results After Desired Behavior is Enforced. 

V. CASE STUDY: CWE-787 
To illustrate the reuse and extension of Alloy specifications 

for more specific weaknesses, we modeled CWE-787, whose 
parent is CWE-119. CWE-787: “Out-of-bounds Write” is [6]: 
Description Summary: The software writes data past the end, 
or before the beginning, of the intended buffer. 
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STEP 1: Prepare CWEs 
CWE-787 is a specialized version of CWE-119, thus it 

inherits the aspects identified for CWE-119 in the previous 
section. CWE-787 is classified as a base weakness i.e. it has 
details about detection and/or prevention. The following 
aspects are identified from the CWE-787 textual description. 
• WEAKNESS-3: Out-of-bounds Write 
• WEAKNESS-4: Software writes data past the end of the 

intended buffer 
• WEAKNESS-5: Software writes data before the beginning 

of the intended buffer 
Notice that WEAKNESS-3 is equivalent to WEAKNESS-2 
identified for CWE-119. However, WEAKNESS-4 and 5 are 
more specific to WEAKNESS-2 as they specify the precise 
locations, i.e. at the start and end of a buffer.  

STEP 2: Identification of Domain Concepts and Relationships 
The following domain concepts, in addition to those in 

CWE-119, are extracted from the weakness description: 
• Write operation, Memory Buffer Start Location, Memory 

Buffer End Location 
Furthermore, an additional relationship is identified:  
• Buffers consist of a set of memory locations that begin with a 

start location and terminate in an end location. 
With this information, here is how we extend the CWE-119 
Alloy specification for CWE-787. Due to limited space, we 
only include comments where necessary: 
 
sig Buffer { 
   contains: set Location, 
   // Multiplicity: one indicates exactly one 
   start: one StartLocation, 
   end: one EndLocation 
} 
sig Location {  
   partof: set Buffer 
   // Multiplicity: lone indicates zero or one. 
   previousLocation: lone Location, 
   nextLocation: lone Location, 
   // Int, a predefined signature represents  
   // a set of integer atoms 
   position: lone Int 
} 
// There exists a StartLocation  
one sig StartLocation extends Location {} 
// A compact way to state facts  
// related to the StartLocation 
{  no previousLocation  
   position = 1 } 
// There exists an EndLocation 
one sig EndLocation extends Location {} 
// A compact way to state facts  
// related to the EndLocation 
{  no nextLocation } 
 

The following domain facts are iteratively derived to rule 
out inconsistent buffer data structures obtained upon simulation 
of the operate predicate.  

 

fact{ 
// A Location pointed to by nextLocation from a  
// Location has a previousLocation relationship  
// with the latter  
all l1: Location, l2: l1.nextLocation | 
   l2.previousLocation = l1 
// A Location pointed to by nextLocation from a  
// Location has a position value that is  
// greater that one  
all l1: Location, l2: l1.nextLocation |  
   l2.position = l1.position.plus[1] 
// A Location always has a positive position 
all l: Location | l.position > 0 
// No two Locations have the same position 
all l,l': Location |  
   disj[l,l'] implies  
      disj [l.position, l'.position] 
// The operator "*" denotes reflexive  
// transitive closure.  
// A Location is part of a buffer only it can 
// be reached from the startLocation by  
// following the nextLocation relationship. 
all l: Location, b: Buffer |  
   l in b.start.*nextLocation iff  
      l in b.contain      
// Start and end locations are in the buffer. 
all l: Location, b: Buffer |  
   l in b.start implies l in b.contains 
all l: Location, b: Buffer |  
   l in b.end implies l in b.contains 
} 

STEPS 3-5: Modeling, Checking and Enforcing Desired 
Operational Behavior 
The predicate operate and assertion noBufferOverflow 

from the specification for CWE-119 are used as is for CWE-
787. If desired, the performsOperation relation can be renamed 
to performsWriteOperation. Since it does not affect the model 
structure we do not introduce the change here.  

 

 
Figure 5: Counterexample for noBufferOverlow assertion  

The counter-example that results upon checking the assertion is 
shown in Figure 5 where the Software writes past the 
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EndLocation at position 2 onto Location2 at position 5. The 
scope of this check includes five Locations. Other counter-
examples, possibly simpler, can be examined by asking alloy 
analyzer to report the “next” instance found. After re-
introducing the fact limitBufferOverflow, from CWE-119, 
the simulation only produces model instances where CWE-787 
weakness does not occur.  

VI. CASE STUDY: CWE-121 
CWE-787 is a parent to CWE-121, which is classified a variant 
weakness, i.e. it is limited to a specific language or technology. 
We also created an Alloy specification for CWE-121 to 
illustrate more details added on to a specialized version. CWE-
121: “Stack-based Buffer Overflow” is described as [6]: 

Description Summary: A stack-based buffer overflow 
condition is a condition where the buffer being overwritten is 
allocated on the stack (i.e., is a local variable or, rarely, a 
parameter to a function). 

STEP 1: Prepare CWEs 
CWE-121 inherits the aspects identified for CWE-787 as 

well as CWE-119 in the previous sections. Using the four 
questions identified before in this step the following aspects are 
identified from the CWE-121 textual description. 
• WEAKNESS-6: Buffer overflow condition 
• RESOURCE-2: Stack-based Buffer 
Notice that WEAKNESS-6 is equivalent to WEAKNESS-2 
identified for CWE-119. However, RESOURCE-2 is a more 
specific type of RESOURCE-1 identified in CWE-119.  

STEP 2: Identification of Domain Concepts and Relationships 
The following domain concept, in addition to those in CWE 

119 and CWE-787, is extracted from the weakness description: 
• Stack 
Furthermore, an additional relationship is identified:  
• Buffer is allocated on the Stack 
With this information, here is how we extend the CWE-787 
Alloy specification for CWE-121: 
 
sig Buffer { 
   contains: set Location, 
   start: one StartLocation, 
   end: one EndLocation, 
   // Buffer is allocated to a Memory Area 
   allocatedTo: one MemoryArea 
} 
// Stack, Heap, and Static are  
// types of Memory Areas 
abstract sig MemoryArea {} 
 
sig Stack, Heap, Static extends MemoryArea {} 
 
// Fact: Buffers are allocated on the Stack 
fact { 

all b:Buffer |  
 b.allocatedTo in Stack 
} 

With this revised structure, the predicate operate, assertion 
noBufferOverflow, and fact limitBufferOverflow 
are simply reused from the specification for CWE-787.  

VII. CASE STUDY: CWE-307 
To illustrate how the methodology would work on a 

completely different type of weakness, we developed a model 
for CWE-307: “Improper Restriction of Excessive 
Authentication Attempts,” described as follows [6]: 

Description Summary: The software does not implement 
sufficient measures to prevent multiple failed authentication 
attempts within in a short time frame, making it more 
susceptible to brute force attacks. 

STEP 1: Prepare CWEs 
While the description of CWE-307 is relatively brief, it 

inherits much from the descriptions of its parents. The 
complete ancestry is shown in Figure 6.  
 

CWE-­‐307:	
  “Improper	
  Restriction	
  of	
  
Excessive	
  Authentication	
  Attempts”

CWE-­‐287:	
  “Improper	
  
Authentication”

CWE-­‐284:	
  “Improper	
  
Access	
  Control”

CWE-­‐799:	
  “Improper	
  Control	
  
of	
  Interaction	
  Frequency”

CWE-­‐691:	
  “Insufficient	
  
Control	
  Flow	
  Management”

CWE-­‐664:	
  “Improper	
  
Control	
  of	
  a	
  Resource	
  
Through	
  its	
  Lifetime”

CWE-­‐693:	
  “Protection	
  
Mechanism	
  Failure”

 
Figure 6: Ancestry of CWE-307 

We have analyzed and developed Alloy models for each of 
these weaknesses. Due to space limitations, we only show here 
the relevant weaknesses and resources/locations identified from 
the parents and ancestors. With respect to CWE-307, the most 
relevant identified weaknesses and resources are: 
• WEAKNESS-8: Failure to prove the identity of an actor 

(CWE-287) 
• WEAKNESS-9: Failure to limit frequency of interactions 

within a given timeframe (CWE-799) 
• WEAKNESS-10: Failure to limit number or frequency of 

authentication attempts  
• RESOURCE-1: Resource (CWE-664) 
• RESOURCE-2: Restricted Resource (CWE-284) 
• RESOURCE-3: Actor (CWE-284) 
• RESOURCE-4: Proof of Identity/Credential (CWE-287) 
• RESOURCE-5: Time Frame (CWE-799) 
• LOCATION-1: Protection Mechanism (CWE-693) 
• LOCATION-2: Access Control (CWE-284) 
• LOCATION-3: Authentication Module (CWE-287) 

STEP 2: Identification of Domain Concepts and Relationships 
Based on the identified resources and locations, we 

identified the domain concepts and relations as shown in the 
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metamodel for CWE-307 (Figure 7). Few additions such as 
OperationAttemptTimeStamp are implied by the descriptions.  

 
Figure 7: CWE-307 - Alloy metamodel 

STEPS 3-4: Modeling and Checking Operational Behavior 
The predicates representing the following operations are 

derived from the weaknesses:  
• Accessing a resource at a time stamp in a time frame. 

The un-desired behavior is specified by an assertion to 
check that multiple failed authentication time-stamped accesses 
do not occur within a given time frame (i.e., time points not in 
the same time frame). This assertion can be checked for a 
single actor (static) or over multiple states of an actor 
(dynamic) depending on how the specification is developed. 
Checking this assertion over multiple actor states produced 
counter-examples, which revealed interesting situations that the 
CWE description and its parents have left unspecified. For 
example, if there is a successful access among (or after) 
multiple failed attempts within the time frame, should that be 
allowed? Cases like these suggest possible improvements 
needed in the CWE description or possible new CWE 
descriptions that specify such cases  

Executable Alloy specifications for this and other models in 
this paper can be downloaded from the following location: 
http://faculty.ist.unomaha.edu/rgandhi/st/alloy.  

VIII. CONCLUSION AND DISCUSSIONS 
Through case studies we make the following observations: 
1. Many constraints in an Alloy specification for an abstract 

CWE can be extended or reused for CWEs that are its 
children. Such reuse enables a clearer definition 
distinguishing specialized weaknesses from more general 
weaknesses. This approach reduces the burden for Alloy 
specification developers and users through the use of 
patterns. In our prior work, patterns were used to capture 
constraints expressed in regulatory requirements [3]. 

2. Lightweight formalization allows to systematically 
aggregate all aspects of a weakness definition that are 
often implicitly considered in describing specific CWEs. 
This is particularly the case with weaknesses that are 

classified as base or variant, as they assume the context 
and understanding of parent class weaknesses. 

3. Dynamic models in Alloy allow constraints specified over 
a sequence of states. Such models are more appropriate to 
capture traces that lead to weaknesses. 

While others have investigated the use of formal 
specification to help detect software vulnerabilities (e.g., [1]), 
the goal of our approach is to facilitate a common 
understanding of software weaknesses, rather than being used 
to directly look for software weaknesses. The lightweight 
specifications can drive downstream weakness detection and 
removal activities using static or dynamic scanning tools. 

The CWEs discussed here are chosen as part of a pilot 
project at NIST to promote a precise and accurate definition. 
Our focus is on some of the most egregious weakness, with 
enough diversity. Our ongoing and future work includes, 
associating fragments of Alloy specification with concepts in a 
semantic template [4], such that more complex situations can 
be modeled and analyzed in the context of a specific 
vulnerability. Such modeling can assist in understanding the 
appropriateness of a fix for a vulnerability or its interference 
with other system behaviors. It is our hypothesis that encoding 
CWE definitions using lightweight formalizations will improve 
their interpretation and integration in a given system context. 
Future case studies related to this hypothesis will evaluate the 
generalizability of our approach; provide opportunities to 
explore inconsistencies in CWE definitions; and improve ways 
to statically or dynamically detect weaknesses in software.  
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