
Lightweight Formal Models of Software Weaknesses

Robin Gandhi, Harvey Siy, Yan Wu
College of Information Science and Technology

University of Nebraska at Omaha, USA
{rgandhi, hsiy, ywu}@unomaha.edu

Abstract—Many vulnerabilities in today’s software products
are rehashes of past vulnerabilities. Such rehashes could be a
result of software complexity that masks inadvertent loopholes in
design and implementation, developer ignorance/disregard for
security issues, or use of software in contexts not anticipated for
the original specification. While weaknesses and exposures in
code are vendor, language, or environment specific, to
understand them we need better descriptions that identify their
precise characteristics in an unambiguous representation. In this
paper, we present a methodology to develop precise and accurate
descriptions of common software weaknesses through lightweight
formal modeling using Alloy. Natural language descriptions of
software weaknesses used for formalization are based on the
community developed Common Weakness Enumerations (CWE).

Index Terms—Software weakness, Alloy modeling, CWE.

I. INTRODUCTION
Precise and accurate weakness descriptions are needed as one
element to speed the work of detecting and preventing those
weaknesses in software. While precision, accuracy and
automation may be achieved by formal representations, such
formality must be balanced with accessibility for review by
software developers that engage in a software implementation
effort, which is still for the most part a manual activity. Thus,
an important prelude to preventing, mitigating, or detecting
weaknesses in software and systems is to have clear,
unambiguous, widely accepted definitions of such weaknesses.

The Common Weakness Enumeration (CWE) provides a
unified and measureable set of software weaknesses for use in
software assurance activities [6]. CWE is a community driven
and continuously evolving taxonomy of software weaknesses.
The CWE vision is to enable a more effective discussion,
description, selection, and use of software security tools and
services that can find weaknesses in source code and
operational systems as well as better understanding and
management of software weaknesses related to architecture and
design. The CWE is often compared to a “Kitchen Sink”,
although in a good way, as it aggregates weakness categories
from many different vulnerability taxonomies, software
technologies and products, and categorization perspectives.
While the CWE is comprehensive, using its highly tangled web
of weakness categories to study vulnerabilities for a particular
software project is a daunting task for stakeholders in the
software development lifecycle.

Much work has been done on the CWE but there are still
ambiguities, and perhaps errors, in its various weakness

definitions. Consider the following questions that might occur
to someone learning about software weaknesses.
• Is a buffer overflow (CWE-119) the same as a stack

overflow (CWE-121) or an unbounded transfer (CWE-
120) or is one just a refinement of another?

• If an integer overflow (CWE-190) leads to memory
bounds violation (CWE-119), which weakness is it? Is it
both or is there some other relation between them?

A quest to develop precise definitions of weakness could
systematically raise these questions about ambiguity, lead to
consolidation or differentiation among CWEs, all while
providing uniformity in their interpretations. Several
approaches exist to formally specify software engineering
artifacts (e.g. requirements, designs, programs, etc.). However,
software weaknesses are rarely modeled formally due to their
abstract descriptions. We envision that a formally specified
collection of weaknesses would suggest properties that should
not be exhibited in a software specification as well as a tightly
constrained set of permitted behaviors.

II. WHY LIGHTWEIGHT FORMAL MODELING USING ALLOY?
Given the declarative and abstract nature of security

weaknesses; it is highly desirable to understand the concrete
circumstances under which a design permits them. Therefore,
in our approach we codify community based weakness
definitions as unambiguous, readable and reusable declarative
specifications that are fully executable in a bounded scope. We
parameterize the natural language expression of weakness
definitions into security relevant concepts and express the
necessary and sufficient conditions in a lightweight formal
modeling language. A formal specification is highly desirable
as it enables a fully or semi-automated analysis of system
behavior. Particularly for analysis of security weaknesses, in
contrast to model checking, we find that a model finding
problem [5] is a more appropriate approach that addresses these
interesting set of questions:
Counterexample model finding: With a certain weakness what
unwanted behaviors can the software exhibit? In other words,
what unwanted system models exist that exemplify the
specified security weakness? How does an under-constrained
software violate security expectation?
Valid model finding: Can a valid instance of software behavior
exist if the software weakness is designed out? In other words,
does the system permit acceptable functional behavior with the
security weakness accounted for?

978-1-4673-6292-4/13 c© 2013 IEEE FormaliSE 2013, San Francisco, CA, USA

Accepted for publication by IEEE. c© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

50

To support these model-finding activities we have chosen
Alloy [5]. Alloy is a lightweight model finder with a fully
automatic analysis that provides immediate feedback. It is
based on relational logic that combines first order logic with
the operators of relational calculus. All structures in this logic
are built from immutable and un-interpreted atoms, and their
relationships. The Alloy language is declarative with the
following key elements:
1. Signature declarations: (keyword sig) that declare a set of

atoms and a set of fields that represent relations. Signature
declarations define the static structure of a model.

2. Constraints: (keywords fact, pred, fun, assert) “Facts”
represent constraints that are always true. “Predicates”
represent a constraint that can be reused in facts, other
predicates or used to simulate model instances that
preserve the constraint. “Functions” are also reusable
constraints like predicates but have a return type other than
Boolean. “Assertions” record constraints that are expected
to hold, but interact with the model only when required (in
contrast to facts that are “always on”).

3. Commands: (keywords run, check) are instructions to the
analyzer to perform particular analyses. “Run” simulates
the model with respect to predicates or functions, where as
“Check” explores counterexamples for assertions.

Alloy analysis is done via a satisfiability solver; given
constraints on variables, it finds a set of instances to the
variables that satisfies the constraints. Satisfiability solvers are
generally undecidable, but Alloy will exhaustively search for a
satisfying model instance within a bounded scope. Because of a
bounded scope if no model instance is found, there is a
possibility that it may exist in a larger scope.

Alloy’s model finding exercise of looking for refutations of
an assertion closely mimics the activity of a malicious and
dedicated adversary that seeks to undermine the security of a
design by exploiting weakness (under-constrained behavior).
Just as refutation-based analysis requires discovering only one
counterexample to invalidate an assertion, an attacker only
needs to discover one possible instance of unexpected, but
allowed, software behavior to undermine or bypass defenses.

III. METHODOLOGY
We propose the following modeling approach to develop

lightweight formalization of CWE definitions:

STEP 1: Preparing CWEs
An initial activity is to study the textual definitions of the
weakness and identify the central concepts involved. In
particular, we focus on the answers to the following questions
in a CWE definition:
1. WEAKNESS: What are the discernable conditions necessary
to establish the existence of the weakness? (They explain
“What” conditions signify a weakness.)
2. FAULT: What are the software faults that can precede the
weakness conditions? (Software faults, in the form of allowed
behaviors, are precursors that bring about the weakness
conditions. They explain “How” weakness conditions occur.)

3. RESOURCE/LOCATION: What are the resources and/or
locations where the weakness conditions commonly occur?
4. CONSEQUENCE: What are the consequences i.e. what are
the failure conditions that the weakness conditions can lead to?

These four questions have also led to the development of
semantic templates to assist programmers in the study of
software vulnerabilities. The development of such semantic
templates and related experiments are described elsewhere
[4][7]. Here we focus on the lightweight formal description of
these concepts identified from CWE textual definitions.

The CWE is a collection of interrelated weakness
definitions. Therefore, for a CWE that is the target of the
formalization activities, we navigate to its parent CWEs and
repeat this step for their definitions. This activity ensures that
all domain concepts and related constraints implicitly inherited
from parent CWEs are considered during the formalization.

STEP 2: Identification of Domain Concepts and Relationships
The next step is to study the textual descriptions of the

software fault, weakness, location/resource and consequences
to identify the domain concepts involved, much like object
identification in object-oriented analysis [2]. In the process, the
scope of the formal model is defined. The identified concepts
form the basis for authoring Alloy signatures.

Next, we identify which concepts are related and describe
their relationships, using object modeling techniques.
Relationships are named and properties of those relationships
(e.g., cardinality, etc.) are determined. These relationships
become fields within their respective Alloy signatures. In this
step, it also becomes necessary to identify domain constraints
as certain facts about the concepts or their relationships (e.g.
multiplicities, functional, inverse, etc.).

STEP 3: Modeling Software Operational Behavior
This step defines Alloy predicates that models the aspect of

software operational behavior upon which the weakness can
arise. A key challenge is determining the appropriate level of
abstraction to use in defining the behavior. The specification
should not be too high level that it no longer enables
meaningful analysis. It should also not be too low-level as this
would be better served by code examples.

In case studies presented later in the paper, we strive for the
level of abstraction to match as closely to the CWE textual
definition. CWE annotation of a weakness as class (abstract),
base (has details about detection and/or prevention) or variant
(limited to a specific language or technology) further helps the
effort. Most base weaknesses tend to be abstract, so operations
are defined on software elements that are largely left
unspecified. On the other hand, weakness variants are more
low level, in which case, operations more closely emulate the
data structures. Depending on the weakness being modeled, the
behavior can also be modeled as static (stateless) or dynamic
(stateful). Stateless operations treat each instance of the
operation as independent of prior operations while stateful
operations depend on certain prior operations involving the
same signatures. While Alloy does not have built-in support for
time or mutable state, these are explicitly included in a model.

51

Upon modeling the predicates, simulate them by running
them using Alloy Analyzer. The discovered model instance
may or may not exhibit the weakness condition.

STEP 4: Checking for Violations of the Desired Behavior
Once the operational behavior has been modeled, the

desired behavior is declaratively specified in terms of the
desired post-condition resulting from executing the operation
specified using Alloy predicates. Note that predicates are
“reusable constraints” in the sense that they are only invoked
upon request. In this step, the predicates are invoked using
Alloy assertions that declaratively specify the desired post-
conditions. The assertions can then be checked automatically
within a bounded scope, using the Alloy Analyzer. If found a
model instance is discovered it acts as a counter-example for
the stated assertion. Violations of the assertions can be
considered as manifestations of the weakness and represent
software behavior that can lead to exploits.

STEP 5: Enforcing the Desired Behavior
In this step, the goal is to define invariant properties on the

operation that prevent the weakness from occurring. This
provides a validation step for the modeling process. The
invariant is expressed as an Alloy fact. By running the Alloy
Analyzer with these invariants, it is expected that no assertion
violations should occur (i.e. no counterexamples discovered in
the given search scope upon checking the assertion in Alloy
Analyzer), while simulating the predicates (i.e. running the
predicate in Alloy Analyzer) still produces valid and expected
system model instances. Note that only the explicitly expressed
assertions and predicates are analyzed for consistency.

IV. CASE STUDY
We illustrate our modeling approach on CWE-119:

Improper Restriction of Operations within the Bounds of a
Memory Buffer, which is described as follows:
Description Summary: The software performs operations on a
memory buffer, but it can read from or write to a memory
location that is outside of the intended boundary of the buffer.

STEP 1: Prepare CWEs
CWE-119 is the most abstract description of a buffer

overflow weakness. It is also a class weakness (abstract).
Using the four questions in this step the following aspects are
identified from the CWE textual description.
• WEAKNESS-0: Improper restriction of operations within the

bounds of a memory buffer
• WEAKNESS-1: Software can read from a memory location

that is outside of the intended boundary of the buffer
• WEAKNESS-2: Software can write to a memory location

that is outside of the intended boundary of the buffer
• RESOURCE-1: Memory Buffer

Note that not all four aspects are identified in most CWE
descriptions. Some CWEs descriptions are resource focused,
where as others are fault and weakness focused.

STEP 2: Identification of Domain Concepts and Relationships
The following domain concepts are extracted:

• Software, Operations (e.g. read and write), Memory Buffer,
and Memory Locations

Furthermore, these concepts are related as follows:
• Buffers consists of memory locations
• Locations are either part of a buffer or not
• Software performs operations on a buffer at certain memory

locations
With this information, here is an initial Alloy specification:
// Signature: Buffer with a relation contains
// that identifies the set of locations that
// are contained in the buffer
sig Buffer {
 contains: set Location
}
// Signature: A Location is part of zero or
// more Buffers. (When no multiplicity is
// specified for a field the default is one.)
sig Location{
 partof: set Buffer
}
// partof relation is the inverse of contains
fact {
 partof = ~contains
}
// Signature: Software with a relation.
// performsOperation relation is a three way
// mapping associating Software, Buffer, and
// Location. It contains the tuple s->b->l
// when Software s performs an operation on
// Buffer b at location l. The multiplicities
// indicate that many-to-many relationship
// can exist between members of Buffer and
// Location for a member of Software.
sig Software{
 performsOperation:
 Buffer set -> set Location
}

Alloy visualizes the metamodel as shown in Figure 1.

Figure 1. CWE-119 - Alloy metamodel.

STEP 3: Modeling Software Operational Behavior
Next, predicates are added. To formally specify the

description of CWE-119, we first simulate a software operation

52

on a buffer in an Alloy specification. The predicate “operate”
models the execution of a buffer read or write as a simple
stateless operation that is performed on buffer named b at a
location l.
// Predicate: Operate that captures a software
// operation on a buffer at a location
// Running this predicate helps confirm
// that the model produces valid instances
// In Alloy, "in" can be read as "subset of".
pred operate
[s: Software, b: Buffer, l: Location] {
 b->l in s.performsOperation
}
// Run predicate in the specified scope
run operate for
1 Buffer, 3 Location, 1 Software

The execution (“Run”) of the predicate instantiates the
signatures involved in the predicate that satisfies the structures
formed by the defined relationships. Note that the operation is
bound for using one member of buffer, three members of
locations and one member of software. We wanted to study the
effect on a particular buffer, hence bounding the operation to
one buffer. Similarly for software bounding it here means we
are only looking at the effect of executing one process or
thread. The bound of 3 locations enables the analyzer to
examine various instances with 3 locations, some associated
with buffer and others which are not. The “small scope
hypothesis” of Alloy states that if an assertion is invalid then it
probably has a small counterexample. So it recommended to
start with a small scope and gradually expand it if a
countermeasure is suspected to exist in a larger scope. Figure 2
below shows a model instance that results upon execution of
the operate predicate. The simulation highlights Software
operations performed on Locations in the context of a single
Buffer. While operation on Location0 is expected, the operation
on Location1 is outside the bounds of the intended Buffer.
Several other instances can be found by browsing the generated
instances of the operate predicate.

Figure 2. Simulation of the Operate Predicate.

STEP 4: Specifying the Desired Behavior
Instead of manually combing through all instances resulting
from the operate predicate, we use the analyzer to identify all
such violations by providing an assertion to check against.

// Assertion: All software operations on a
// Buffer are restricted within the bounds
// of the buffer.
assert noBufferOverflow{
 all s: Software, b:Buffer, l:Location|
 operate[s,b,l] implies l in b.contains
}
// Check assertion in the specified scope
check noBufferOverflow for
1 Buffer, 3 Location, 1 Software

By checking the assertion (“Check”) Alloy returns the
model instances that are counter-examples, in this case, all
instances where there is a buffer overflow violation. Figure 3
shows one such violation as reported by the assertion check.

Figure 3. Buffer Access Violation as Counter-Example of Assertion

STEP 5: Enforcing Desired Behavior
To avoid the undesired behavior of writing outside the

buffer, we can further constrain the model. This constraint is
introduced as an invariant.
// Fact: Software operations on a Buffer are
// restricted to the locations in the bounds
// of that Buffer
fact limitBufferOverflow {
 all s: Software, b:Buffer|
 s.performsOperation[b] in b.contains
}

After introducing this fact, the simulation only produces
model instances where CWE-119 weakness does not occur.
Since the model is appropriately constrained, no
counterexamples result on re-checking the “noBufferOverflow”
assertion (Figure 4). With this fact introduced, the “operate”
predicate still produces valid model instances.

Figure 4. Results After Desired Behavior is Enforced.

V. CASE STUDY: CWE-787
To illustrate the reuse and extension of Alloy specifications

for more specific weaknesses, we modeled CWE-787, whose
parent is CWE-119. CWE-787: “Out-of-bounds Write” is [6]:
Description Summary: The software writes data past the end,
or before the beginning, of the intended buffer.

53

STEP 1: Prepare CWEs
CWE-787 is a specialized version of CWE-119, thus it

inherits the aspects identified for CWE-119 in the previous
section. CWE-787 is classified as a base weakness i.e. it has
details about detection and/or prevention. The following
aspects are identified from the CWE-787 textual description.
• WEAKNESS-3: Out-of-bounds Write
• WEAKNESS-4: Software writes data past the end of the

intended buffer
• WEAKNESS-5: Software writes data before the beginning

of the intended buffer
Notice that WEAKNESS-3 is equivalent to WEAKNESS-2
identified for CWE-119. However, WEAKNESS-4 and 5 are
more specific to WEAKNESS-2 as they specify the precise
locations, i.e. at the start and end of a buffer.

STEP 2: Identification of Domain Concepts and Relationships
The following domain concepts, in addition to those in

CWE-119, are extracted from the weakness description:
• Write operation, Memory Buffer Start Location, Memory

Buffer End Location
Furthermore, an additional relationship is identified:
• Buffers consist of a set of memory locations that begin with a

start location and terminate in an end location.
With this information, here is how we extend the CWE-119
Alloy specification for CWE-787. Due to limited space, we
only include comments where necessary:

sig Buffer {
 contains: set Location,
 // Multiplicity: one indicates exactly one
 start: one StartLocation,
 end: one EndLocation
}
sig Location {
 partof: set Buffer
 // Multiplicity: lone indicates zero or one.
 previousLocation: lone Location,
 nextLocation: lone Location,
 // Int, a predefined signature represents
 // a set of integer atoms
 position: lone Int
}
// There exists a StartLocation
one sig StartLocation extends Location {}
// A compact way to state facts
// related to the StartLocation
{ no previousLocation
 position = 1 }
// There exists an EndLocation
one sig EndLocation extends Location {}
// A compact way to state facts
// related to the EndLocation
{ no nextLocation }

The following domain facts are iteratively derived to rule
out inconsistent buffer data structures obtained upon simulation
of the operate predicate.

fact{
// A Location pointed to by nextLocation from a
// Location has a previousLocation relationship
// with the latter
all l1: Location, l2: l1.nextLocation |
 l2.previousLocation = l1
// A Location pointed to by nextLocation from a
// Location has a position value that is
// greater that one
all l1: Location, l2: l1.nextLocation |
 l2.position = l1.position.plus[1]
// A Location always has a positive position
all l: Location | l.position > 0
// No two Locations have the same position
all l,l': Location |
 disj[l,l'] implies
 disj [l.position, l'.position]
// The operator "*" denotes reflexive
// transitive closure.
// A Location is part of a buffer only it can
// be reached from the startLocation by
// following the nextLocation relationship.
all l: Location, b: Buffer |
 l in b.start.*nextLocation iff
 l in b.contain
// Start and end locations are in the buffer.
all l: Location, b: Buffer |
 l in b.start implies l in b.contains
all l: Location, b: Buffer |
 l in b.end implies l in b.contains
}

STEPS 3-5: Modeling, Checking and Enforcing Desired
Operational Behavior
The predicate operate and assertion noBufferOverflow

from the specification for CWE-119 are used as is for CWE-
787. If desired, the performsOperation relation can be renamed
to performsWriteOperation. Since it does not affect the model
structure we do not introduce the change here.

Figure 5: Counterexample for noBufferOverlow assertion

The counter-example that results upon checking the assertion is
shown in Figure 5 where the Software writes past the

54

EndLocation at position 2 onto Location2 at position 5. The
scope of this check includes five Locations. Other counter-
examples, possibly simpler, can be examined by asking alloy
analyzer to report the “next” instance found. After re-
introducing the fact limitBufferOverflow, from CWE-119,
the simulation only produces model instances where CWE-787
weakness does not occur.

VI. CASE STUDY: CWE-121
CWE-787 is a parent to CWE-121, which is classified a variant
weakness, i.e. it is limited to a specific language or technology.
We also created an Alloy specification for CWE-121 to
illustrate more details added on to a specialized version. CWE-
121: “Stack-based Buffer Overflow” is described as [6]:

Description Summary: A stack-based buffer overflow
condition is a condition where the buffer being overwritten is
allocated on the stack (i.e., is a local variable or, rarely, a
parameter to a function).

STEP 1: Prepare CWEs
CWE-121 inherits the aspects identified for CWE-787 as

well as CWE-119 in the previous sections. Using the four
questions identified before in this step the following aspects are
identified from the CWE-121 textual description.
• WEAKNESS-6: Buffer overflow condition
• RESOURCE-2: Stack-based Buffer
Notice that WEAKNESS-6 is equivalent to WEAKNESS-2
identified for CWE-119. However, RESOURCE-2 is a more
specific type of RESOURCE-1 identified in CWE-119.

STEP 2: Identification of Domain Concepts and Relationships
The following domain concept, in addition to those in CWE

119 and CWE-787, is extracted from the weakness description:
• Stack
Furthermore, an additional relationship is identified:
• Buffer is allocated on the Stack
With this information, here is how we extend the CWE-787
Alloy specification for CWE-121:

sig Buffer {
 contains: set Location,
 start: one StartLocation,
 end: one EndLocation,
 // Buffer is allocated to a Memory Area
 allocatedTo: one MemoryArea
}
// Stack, Heap, and Static are
// types of Memory Areas
abstract sig MemoryArea {}

sig Stack, Heap, Static extends MemoryArea {}

// Fact: Buffers are allocated on the Stack
fact {

all b:Buffer |
 b.allocatedTo in Stack
}

With this revised structure, the predicate operate, assertion
noBufferOverflow, and fact limitBufferOverflow
are simply reused from the specification for CWE-787.

VII. CASE STUDY: CWE-307
To illustrate how the methodology would work on a

completely different type of weakness, we developed a model
for CWE-307: “Improper Restriction of Excessive
Authentication Attempts,” described as follows [6]:

Description Summary: The software does not implement
sufficient measures to prevent multiple failed authentication
attempts within in a short time frame, making it more
susceptible to brute force attacks.

STEP 1: Prepare CWEs
While the description of CWE-307 is relatively brief, it

inherits much from the descriptions of its parents. The
complete ancestry is shown in Figure 6.

CWE-­‐307:	
 “Improper	
 Restriction	
 of	

Excessive	
 Authentication	
 Attempts”

CWE-­‐287:	
 “Improper	

Authentication”

CWE-­‐284:	
 “Improper	

Access	
 Control”

CWE-­‐799:	
 “Improper	
 Control	

of	
 Interaction	
 Frequency”

CWE-­‐691:	
 “Insufficient	

Control	
 Flow	
 Management”

CWE-­‐664:	
 “Improper	

Control	
 of	
 a	
 Resource	

Through	
 its	
 Lifetime”

CWE-­‐693:	
 “Protection	

Mechanism	
 Failure”

Figure 6: Ancestry of CWE-307

We have analyzed and developed Alloy models for each of
these weaknesses. Due to space limitations, we only show here
the relevant weaknesses and resources/locations identified from
the parents and ancestors. With respect to CWE-307, the most
relevant identified weaknesses and resources are:
• WEAKNESS-8: Failure to prove the identity of an actor

(CWE-287)
• WEAKNESS-9: Failure to limit frequency of interactions

within a given timeframe (CWE-799)
• WEAKNESS-10: Failure to limit number or frequency of

authentication attempts
• RESOURCE-1: Resource (CWE-664)
• RESOURCE-2: Restricted Resource (CWE-284)
• RESOURCE-3: Actor (CWE-284)
• RESOURCE-4: Proof of Identity/Credential (CWE-287)
• RESOURCE-5: Time Frame (CWE-799)
• LOCATION-1: Protection Mechanism (CWE-693)
• LOCATION-2: Access Control (CWE-284)
• LOCATION-3: Authentication Module (CWE-287)

STEP 2: Identification of Domain Concepts and Relationships
Based on the identified resources and locations, we

identified the domain concepts and relations as shown in the

55

metamodel for CWE-307 (Figure 7). Few additions such as
OperationAttemptTimeStamp are implied by the descriptions.

Figure 7: CWE-307 - Alloy metamodel

STEPS 3-4: Modeling and Checking Operational Behavior
The predicates representing the following operations are

derived from the weaknesses:
• Accessing a resource at a time stamp in a time frame.

The un-desired behavior is specified by an assertion to
check that multiple failed authentication time-stamped accesses
do not occur within a given time frame (i.e., time points not in
the same time frame). This assertion can be checked for a
single actor (static) or over multiple states of an actor
(dynamic) depending on how the specification is developed.
Checking this assertion over multiple actor states produced
counter-examples, which revealed interesting situations that the
CWE description and its parents have left unspecified. For
example, if there is a successful access among (or after)
multiple failed attempts within the time frame, should that be
allowed? Cases like these suggest possible improvements
needed in the CWE description or possible new CWE
descriptions that specify such cases

Executable Alloy specifications for this and other models in
this paper can be downloaded from the following location:
http://faculty.ist.unomaha.edu/rgandhi/st/alloy.

VIII. CONCLUSION AND DISCUSSIONS
Through case studies we make the following observations:
1. Many constraints in an Alloy specification for an abstract

CWE can be extended or reused for CWEs that are its
children. Such reuse enables a clearer definition
distinguishing specialized weaknesses from more general
weaknesses. This approach reduces the burden for Alloy
specification developers and users through the use of
patterns. In our prior work, patterns were used to capture
constraints expressed in regulatory requirements [3].

2. Lightweight formalization allows to systematically
aggregate all aspects of a weakness definition that are
often implicitly considered in describing specific CWEs.
This is particularly the case with weaknesses that are

classified as base or variant, as they assume the context
and understanding of parent class weaknesses.

3. Dynamic models in Alloy allow constraints specified over
a sequence of states. Such models are more appropriate to
capture traces that lead to weaknesses.

While others have investigated the use of formal
specification to help detect software vulnerabilities (e.g., [1]),
the goal of our approach is to facilitate a common
understanding of software weaknesses, rather than being used
to directly look for software weaknesses. The lightweight
specifications can drive downstream weakness detection and
removal activities using static or dynamic scanning tools.

The CWEs discussed here are chosen as part of a pilot
project at NIST to promote a precise and accurate definition.
Our focus is on some of the most egregious weakness, with
enough diversity. Our ongoing and future work includes,
associating fragments of Alloy specification with concepts in a
semantic template [4], such that more complex situations can
be modeled and analyzed in the context of a specific
vulnerability. Such modeling can assist in understanding the
appropriateness of a fix for a vulnerability or its interference
with other system behaviors. It is our hypothesis that encoding
CWE definitions using lightweight formalizations will improve
their interpretation and integration in a given system context.
Future case studies related to this hypothesis will evaluate the
generalizability of our approach; provide opportunities to
explore inconsistencies in CWE definitions; and improve ways
to statically or dynamically detect weaknesses in software.

ACKNOWLEDGMENT
This research is partially funded by DoD/AFOSR, NSF

FA9550-07-1-0499, “High Assurance Software” and NIST
70NANB12H013, “Developing Precise and Accurate
Descriptions of Common Software Weaknesses”.

We also acknowledge several constructive reviews from
Dr. Paul E. Black, NIST, on early drafts of this paper.

REFERENCES
[1] M. Almorsy, J. Grundy, A.S. Ibrahim, “Supporting Automated

Vulnerability Analysis Using Formalized Vulnerability
Signatures,” Intl. Conf. on Automated Soft. Eng. (ASE 2012).

[2] B. Bruegge, A. Dutoit, Object-Oriented Software Engineering
Using UML, Patterns, and Java. Prentice Hall, 2009.

[3] R.A. Gandhi, M. Rahmani, “Early Security Patterns: A
Collection of Constraints to Describe Regulatory Security
Requirements,” RePa 2012: Intl. Workshop on Requirements
Patterns, Intl. Conf. on Requirements Engineering (RE 2012).

[4] R.A. Gandhi, H. Siy, Y. Wu, “Studying Software
Vulnerabilities,” CrossTalk, The Journal of Defense Software
Engineering, Sept/Oct issue 2010.

[5] D. Jackson, Software Abstractions: Logic, Language, and
Analysis. MIT Press, 2012.

[6] MITRE, “Common Weakness Enumeration,”
http://cwe.mitre.org/ (Accessed on Jan. 10, 2013).

[7] Y. Wu, H. Siy, R.A. Gandhi, “Empirical Results on the Study of
Software Vulnerabilities (NIER Track).” International
Conference on Software Engineering (ICSE 2011), May, 2011.

56

